Search results for "Acoustics and Ultrasonic"

showing 10 items of 275 documents

Controlled turbulence regime of electron cyclotron resonance ion source for improved multicharged ion performance

2020

Fundamental studies of excitation and non-linear evolution of kinetic instabilities of strongly nonequlibrium hot plasmas confined in open magnetic traps suggest new opportunities for fine-tuning of conventional electron cyclotron resonance (ECR) ion sources. These devices are widely used for the production of particle beams of high charge state ions. Operating the ion source in controlled turbulence regime allows increasing the absorbed power density and therefore the volumetric plasma energy content in the dense part of the discharge surrounded by the ECR surface, which leads to enhanced beam currents of high charge state ions. We report experiments at the ECR ion source at the JYFL accel…

010302 applied physicsAccelerator Physics (physics.acc-ph)Materials scienceAcoustics and UltrasonicsIon beamFOS: Physical sciencesPlasmaCondensed Matter PhysicsKinetic energy7. Clean energy01 natural sciencesElectron cyclotron resonanceIon sourcePhysics - Plasma Physics010305 fluids & plasmasSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonPlasma Physics (physics.plasm-ph)Physics::Plasma Physics0103 physical sciencesPhysics - Accelerator PhysicsAtomic physicsExcitationBeam (structure)
researchProduct

Effect of space charge on the negative oxygen flux during reactive sputtering

2017

Negative ions often play a distinctive role in the phase formation during reactive sputter deposition. The path of these high energetic ions is often assumed to be straight. In this paper, it is shown that in the context of reactive magnetron sputtering space charge effects are decisive for the energetic negative ion trajectories. To investigate the effect of space charge spreading, reactive magnetron sputter experiments were performed in compound mode with target materials that are expected to have a high secondary ion emission yield (MgO and CeO2). By the combination of energy flux measurements, and simulations, a quantitative value for the negative oxygen ion yield can be derived.

010302 applied physicsAcoustics and UltrasonicsChemistryEnergy fluxContext (language use)02 engineering and technologySputter deposition021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSpace chargeMolecular physicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonCondensed Matter::Materials SciencePhysics::Plasma PhysicsSputteringYield (chemistry)0103 physical sciencesOxygen fluxAtomic physics0210 nano-technologyJournal of Physics D: Applied Physics
researchProduct

Determination of an empirical law of aluminium and magnesium alloys absorption coefficient during Nd :YAG laser interaction

2007

International audience; Welding laser modelling requires knowledge about relative changes of many thermo-physical parameters involved in the interaction. The absorptivity of the material is one of the most important. In this study, experimental measurements of absorptivity with an integrating sphere on two alloys (aluminium and magnesium) were made. These results were compared with an analytical calculation that takes into account the trapping of the beam by multiple reflections inside the keyhole. Based on a statistical method, an empirical law is proposed connecting absorptivity with the peak power of the laser and the duration of interaction. During the interaction, two distinct phenomen…

010302 applied physicsAcoustics and UltrasonicsChemistry[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]chemistry.chemical_element02 engineering and technologyWeldingMolar absorptivity021001 nanoscience & nanotechnologyCondensed Matter PhysicsLaser01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionIntegrating spherelawAluminiumAttenuation coefficientNd:YAG laser0103 physical sciences[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0210 nano-technologyBeam (structure)
researchProduct

Generalised bisection method for optimum ultrasonic ray tracing and focusing in multi-layered structures

2021

Ultrasonic testing has been used for many decades, proving itself very efficient for detecting defects in many industrial sectors. The desire to apply ultrasonic testing to geometrically complex structures, and to anisotropic, inhomogeneous materials, together with the advent of more powerful electronics and software, is constantly pushing the applicability of ultrasonic waves to their limits. General ray tracing models, suitable for calculating the proper incident angle of single element probes and the proper time delay of phased array, are currently required. They can support the development of new imaging techniques, as Full Matrix Capture and Total Focusing Method, and the execution of …

010302 applied physicsAcoustics and UltrasonicsComputer scienceIterative methodbusiness.industryTKComputationUltrasonic testing01 natural sciencesRay tracing (physics)Settore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineSoftware0103 physical sciencesBisection methodUltrasonic wave propagation Ray tracing Mathematical modelling Bisection method Multi-layered structures Weld inspection CompositesA priori and a posterioriUltrasonic sensorbusiness010301 acousticsAlgorithmUltrasonics
researchProduct

High-frequency electrodeless lamps in argon–mercury mixtures

2005

In this paper, numerical and experimental investigations of high-frequency (HF) electrodeless lamps in argon–mercury mixtures are performed. The intensities of the mercury spectral lines having wavelengths λ = 404.66, 435.83, 546.07 nm (7 3S1–6 3P0,1,2) and the resonance line λ = 253.7 nm (6 3 P1–6 1S0) are measured at a wide range of mercury pressures, varying the HF generator current and argon filling pressure. A stationary self-consistent model of HF electrodeless discharge lamp is developed including kinetics of the excited mercury and argon atomic states. Based on the developed model, the radiation characteristics of the discharge plasma are calculated. Numerical simulation of the line…

010302 applied physicsGas-discharge lampArgonAcoustics and Ultrasonics[SPI.PLASMA]Engineering Sciences [physics]/PlasmasAnalytical chemistrychemistry.chemical_elementPlasmaRadiationCondensed Matter Physics01 natural sciencesSpectral lineSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionMercury (element)010309 opticsWavelengthchemistrylawExcited state0103 physical sciences[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicComputingMilieux_MISCELLANEOUS
researchProduct

2018

CrN thin films with an N/Cr ratio of 95% were deposited by reactive magnetron sputtering onto (0 0 0 1) sapphire substrates. X-ray diffraction and pole figure texture analysis show CrN (1 1 1) epitaxial growth in a twin domain fashion. By changing the nitrogen versus argon gas flow mixture and the deposition temperature, thin films with different surface morphologies ranging from grainy rough textures to flat and smooth films were prepared. These parameters can also affect the CrN x system, with the film compound changing between semiconducting CrN and metallic Cr2N through the regulation of the nitrogen content of the gas flow and the deposition temperature at a constant deposition pressur…

010302 applied physicsMaterials scienceAcoustics and Ultrasonics02 engineering and technologyPole figure021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsElectrical resistivity and conductivitySputteringSeebeck coefficient0103 physical sciencesThermoelectric effectsense organsTexture (crystalline)Thin filmComposite material0210 nano-technologyJournal of Physics D: Applied Physics
researchProduct

The α and γ plasma modes in plasma-enhanced atomic layer deposition with O2-N2 capacitive discharges

2017

Two distinguishable plasma modes in the O2–N2 radio frequency capacitively coupled plasma (CCP) used in remote plasma-enhanced atomic layer deposition (PEALD) were observed. Optical emission spectroscopy and spectra interpretation with rate coefficient analysis of the relevant processes were used to connect the detected modes to the α and γ modes of the CCP discharge. To investigate the effect of the plasma modes on the PEALD film growth, ZnO and TiO2 films were deposited using both modes and compared to the films deposited using direct plasma. The growth rate, thickness uniformity, elemental composition, and crystallinity of the films were found to correlate with the deposition mode. In re…

010302 applied physicsMaterials scienceAcoustics and UltrasonicsCapacitive sensingAnalytical chemistry02 engineering and technologyPlasma021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSpectral lineSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAtomic layer depositionCrystallinity0103 physical sciencesDeposition (phase transition)plasma modesCapacitively coupled plasmaRadio frequency0210 nano-technologyplasma-enhanced atomic layer deposition
researchProduct

Tuning of interfacial perpendicular magnetic anisotropy and domain structures in magnetic thin film multilayers

2019

We investigate the magnetic domain structures and the perpendicular magnetic anisotropy (PMA) arising in CoFeB films interfaced with selected heavy metal (HM) layers with large spin Hall angles in HM/CoFeB/MgO (HM = W, Pt, Pd, W x Ta1−x ) stacks as a function of CoFeB thickness and composition for both as-deposited and annealed materials stacks. The coercivity and the anisotropy fields of annealed material stacks are higher than for the as-deposited stacks due to crystallisation of the ferromagnetic layer. Generally a critical thickness of MgO > 1 nm provides adequate oxide formation at the top interface as a requirement for the generation of PMA. We demonstrate that in stacks with Pt as th…

010302 applied physicsMaterials scienceAcoustics and UltrasonicsCondensed matter physicsMagnetic domainAnnealing (metallurgy)02 engineering and technologyCoercivity021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsTransition metalFerromagnetismHall effect0103 physical sciencesThin film0210 nano-technologyAnisotropyJournal of Physics D: Applied Physics
researchProduct

Quantitative analysis of magnetization reversal in Ni thin films on unpoled and poled (0 1 1) [PbMg1/3Nb2/3O3]0.68–[PbTiO3]0.32piezoelectric substrat…

2016

The field angle dependence of the magnetization reversal in 20 nm thick polycrystalline Ni films grown on piezoelectric (0 1 1) [PbMg1/3Nb2/3O3](0.68)-[PbTiO3](0.32) (PMN-PT) substrates is analysed quantitatively to study the magnetic anisotropy induced in the film by poling the piezosubstrate. While the PMN-PT is in the unpoled state, the magnetization reversal is almost isotropic as expected from the polycrystalline nature of the film and corresponding to an orientation ratio (OR) of 1.2. The orientation ratio is obtained by fitting the angular dependence of normalized remanent magnetization to an adapted Stoner-Wohlfarth relation. Upon poling the piezosubstrate, a strong uniaxial anisotr…

010302 applied physicsMaterials scienceAcoustics and UltrasonicsCondensed matter physicsMagnetic momentbusiness.industryIsotropyPoling02 engineering and technologyCoercivity021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesPiezoelectricitySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMagnetic anisotropyOpticsRemanence0103 physical sciencesddc:530FIELD0210 nano-technologyAnisotropybusinessJournal of Physics D: Applied Physics
researchProduct

Experimental investigation of the effect of moisture on the acoustic properties of lightweight substrates used in green envelopes

2021

International audience; Substrates are used in green walls and roofs to supply air and water to the roots of the growing plants. These substrates are porous with micropores which store water and macropores which facilitate drainage and air entry. Effect of moisture on acoustic absorption is studied for two lightweight substrates: coir dust and perlite. Measurement of dry and moistened substrates are conducted to evaluate their effective speed of sound, attenuation, characteristic impedance, compressibility and density between 100 Hz and 1000 Hz using an impedance tube and the three microphone-two load method. Effect of moisture on these quantities is found to depend strongly upon the intera…

010302 applied physics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Materials scienceAcoustics and UltrasonicsMacroporeMoistureAcoustic porous mediumLightweight substrateSound absorption;Lightweight substrate;Acoustic porous medium;Moisture;Green envelopeGreen envelope01 natural sciencesCharacteristic impedance[SPI.MAT]Engineering Sciences [physics]/MaterialsSubstrate (building)Speed of sound0103 physical sciencesPerliteSound absorptionComposite material[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsPorosity010301 acousticsMicroscale chemistryMoisture
researchProduct